CALCULUS I XMAS REVIEW SOLUTIONS |
QUESTION 1
a) zeros: x = -2, x = 1 and x = 2
b) , the equation of the tangent is y = -4x + 4
c) Since lines must be parallel, slopes must be equal,
so we set f '(x) = slope = 1
d)
The curve is increasing on the intervals .
The curve is decreasing on the interval
e) The endpoints of the interval are at (0, 4) and (3, 10).
From part (d), we know that the critical point at is on the interval [0, 3].
Since f(1.54) = -1.59, we have an Absolute Min of -1.59 and an Absolute Max of 10.
.
______________________________________
QUESTION 2
Given: g(x) = 2x 4 - 8x 2 which factors as 2x 2 (x - 2)(x + 2)
Intercepts & Asymptotes
Zeros are at x = -2, x = 0 and x = 2.
There are no Asymptotes -- it's a polynomial function.
First Derivative: Maximum, Minimum, Increasing, Decreasing
.
This means we have critical points at
Increasing :
Decreasing :
Therefore, we have a local maximum at (0, 0) and local minimums at
Second Derivative: Concave Down, Concave Up
This means we have points of inflection at
Concave Up : x < -0.82 and x > 0.82
Concave Down : -0.82 < x < 0.82.
Symmetry : to the y-axis.
______________________________________
QUESTION 3
Since V = x² h = 4, we know that h = 4 / x².
Now, the surface area of the box A = x² + 4xh and when we substitute h = 4 / x² we get
The solution is to make the square base 2 dm and the height 1 dm.
______________________________________
QUESTION 4
y = x² + 2x
a)
b) P(-3, 3) so y' = -4, the slope of the tangent is -4.
c) Since y = 24 at x = 4, and y' = 10 at x = 4, the tangent equation is y = 10x - 16.
______________________________________
QUESTION 5
We have
a) domain : x > 3;
range : y > 0
b)
Now we rationalize the numerator, collect terms, and limit h to 0:
c) At x = 7, y = ½, and y' = -1 / 16
The equation of the tangent to this curve at (7, ½) is .
______________________________________
QUESTION 6
a) ![]() |
b) ![]() |
c) ![]() |
d) ![]() |
e) ![]() |
f)
______________________________________
QUESTION 7
s(t) = t 3 - 6t 2 + 9t
a) v(t) = s'(t) = 3t 2 - 12t + 9
b) v(2) = - 3 metres / sec
c) s'(t) = v(t) = 0 means that 3t 2 - 12t + 9 = 0 so 3(t - 1)(t - 3) = 0.
The particle is at rest at 1 second and at 3 seconds.
d) The particle is moving in a positive direction when v(t) > 0
This is when 0 < t < 1 and t > 3.
e) s(0) = 0 | s(1) = 5 | s(3) = 0 | s(5) = 74 |
f) The particle travelled from 0 to 5 then back to 0 then out to 74
for a total of 84 metres in the first 5 seconds. (first 2 moves cover 10 metres)
______________________________________
.
Back to Calculus I MathRoom Index
.
(all content of the MathRoom Lessons © Tammy the Tutor; 2002 - 2005).