CORRECTION KEY Math 536.05

	Part A	
	Questions 1 to 104 marks or 0 marks	
]	C 6 D	
]	A 7 C	
	B 8 D	
	C 9 B	
	A 10 B	
	Part B]
	Questions 11 to 154 marks each	
	The coordinates of the foci are (1, -1) and (1, -7).4, 2 or 0 marksAllot 2 marks for each ordered pair.4, 2 or 0 marks	/4
	$f^{-1}(x) = \frac{8+2x}{x-1}$ or $f^{-1}(x) = \frac{10}{x-1} + 2$ 4 marks or 0 marks	/4
	The equations of the asymptotes are $x = -4$ and $y = 1$. <i>Allot 2 marks for each equation</i> $4, 2 \text{ or } 0 \text{ marks}$	/4

The equations of the asymptotes are x = -4 and y = 1. Allot 2 marks for each equation.

2

$2 \cos^2 \theta - 3 \sin \theta = 3$ $2(1 - \sin^2 \theta) - 3 \sin \theta = 3$		1 mark
$2 - 2\sin^2\theta - 3\sin\theta = 3$		
$2 \sin^2 \theta + 3 \sin \theta + 1 = 0$ (2 \sin \theta + 1)(\sin \theta + 1) = 0		
$\sin \theta = \frac{-1}{2}$ or $\sin \theta = -1$		1 mark
-1		
For $\sin \theta = \frac{-1}{2}$	For sin $\theta = -1$	

Reference angles: $\theta = \frac{\pi}{6}$ $\theta = \frac{3\pi}{2} \qquad l mark$

The sine function is negative in Quadrants III and IV.

In radian measure, the exact answers are $\theta \in \left\{\frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}$ 1 mark Answer:

Correct answers in degree measure, or rounded numerical answers receive a maximum of Note: 2 marks.

Example of an appropriate solution

The

Answer:

$$\vec{u}(2\vec{u} \cdot \vec{3v}) = \vec{u}(2(-1, 1) \cdot \vec{3}(1, 2))$$

$$= \vec{u}((-2, 2) \cdot (\vec{3}, 6)) \qquad 1 \text{ mark}$$

$$= \vec{u}((-2) \cdot \vec{3}) + (2 \cdot 6))$$

$$= \vec{u}((-6) + (12))$$

$$= \vec{u}(6) \qquad 1 \text{ mark}$$

$$= \vec{6u}$$

$$= \vec{6u}$$

$$= \vec{6}(-1, 1)$$

$$= (-6, 6) \qquad 2 \text{ marks}$$
Answer: The components of $\vec{u}(2\vec{u} \cdot \vec{3v})$ are (-6, 6).

of

components

/4

/4

(-6, 6).

15

Questions 16 to 254 marks eachNo marks are to be given if work is not shown. Examples of correct solutions are given.However, other acceptable solutions are possible.

16

Example of an appropriate solution

x: number of almond chocolate bars *y*: number of caramel chocolate bars

Constraints

 $x + y \le 500$ $x \le 4y$ $x \ge 120$

Profit

P = 0.8x + y

/4

Point	Profit
A(120, 380)	\$476
B(120, 30)	\$126
C(400, 100)	\$420

Point	Profit
A'(160, 340)	\$468
B'(160, 40)	\$168
C'(400, 100)	\$420

Difference in profit \$476 - \$468 = \$8

Answer: The difference in the maximum profit is **\$8**.

Note: Students who use an appropriate method in order to determine the constraints, graph the polygon and find the original corner points have shown they have a partial understanding of the problem.

Greatest integer function

17

$$x = 0 \Rightarrow$$
 $y = 32.5[0.05(0) + 3] + 52.5$
= $32.5[3] + 52.5$
= 150 cm

Step length = $\frac{1}{0.05}$ = 20 \Rightarrow Last open point is (20, 150)

Rational function

$$y = \frac{a}{x+10} - 10$$

150 = $\frac{a}{20+10} - 10$
160 = $\frac{a}{30}$
 $a = 4800$

Equation

$$y = \frac{4800}{x+10} - 10$$

$$x = 180 \Rightarrow \qquad y = \frac{4800}{180 + 10} - 10$$

\$\approx 15.26 cm

Answer: To the nearest tenth of a centimetre, the distance is 15.3 cm.

Note: Students who use an appropriate method in order to correctly determine the point (20, 150) have shown they have a partial understanding of the problem.

Find the equation of the absolute value function Vertex (1, 10) point (0, 2)

$$y = a | x - 1 | + 10$$

$$2 = a | -1 | + 10$$

$$-8 = a$$

$$y = -8 | x - 1 | + 10$$

Find the *x* value when y = 1

$$y = -8 | x - 1 | + 10$$

$$1 = -8 | x - 1 | + 10$$

$$-9 = -8 | x - 1 |$$

$$\frac{9}{8} = | x - 1 |$$

∴ $x - 1 = \frac{-9}{8}$ or $x - 1 = \frac{9}{8}$
 $x = \frac{-1}{8}$ $x = \frac{17}{8}$
 $x = \frac{17}{8}$ or 2.125

Find the equation of the square root function Starting point (2.125, 1) point (3.125, 3)

$$y = a\sqrt{x - 2.125} + 1$$

3 = $a\sqrt{3.125 - 2.125} + 1$
2 = $a\sqrt{1}$
2 = a

So
$$y = 2\sqrt{x - 2.125} + 1$$

6.

Find the time when the height is 5 m

$$y = 2\sqrt{x - 2.125} + 1$$

$$5 = 2\sqrt{x - 2.125} + 1$$

$$4 = 2\sqrt{x - 2.125}$$

$$2 = \sqrt{x - 2.125}$$

$$4 = x - 2.125$$

$$125 = x$$

Answer: The ball hits the wall **6.125** seconds after it was hit by the racket.

Note: Students who use an appropriate method in order to determine the starting point of the square root function have shown they have a partial understanding of the problem.

Do not penalize students who rounded their final answer.

19

Let t: number of days f(t): amount of the compound remaining (g)

$$f(t) = 150c^{t}$$

$$123 = 150c^{10}$$

$$0.82 = c^{10}$$

$$c = \sqrt[10]{0.82}$$

$$c \approx 0.98$$

Time for 75 g to remain:

$$f(t) = 150(0.98)^{t}$$

$$75 = 150(0.98)^{t}$$

$$0.5 = (0.98)^{t}$$

$$t = \log_{0.98} (0.5)$$

$$t = \frac{\log (0.5)}{\log (0.98)}$$

$$t \approx 34.3$$

Answer: To the nearest day, half of the compound will remain after 34 days.

Note: Students who do not round $\sqrt[10]{0.82}$ will obtain a rounded answer of 35 days. Accept answer of 34 or 35 days if appropriate work is shown.

Students who use an appropriate method in order to correctly determine the value $c \approx 0.98$ have shown they have a partial understanding of the problem.

Students who use the half-life formula $N = N_o (0.5)^{\frac{t}{H}}$ where H is the half-life, and who obtain $\frac{10}{H} = \log_{0.5}(0.82)$ have shown they have a partial understanding of the problem.

Do not penalize students who did not round their final answer or rounded incorrectly.

$$a + c = 167$$

 $2c = 132$

 $\therefore c = 66 \text{ and } a = 101$

$$b^{2} = a^{2} - c^{2}$$

$$b = \sqrt{101^{2} - 66^{2}}$$

$$b \approx 76.45$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

$$\frac{x^{2}}{10\ 201} + \frac{y^{2}}{5845} = 1$$

$$\frac{66^{2}}{10\ 201} + \frac{y^{2}}{5845} = 1$$

$$y \approx 57.87$$

- Answer: To the nearest length, the distance from Mars to the Sun is **57.9** AU.
- **Note:** Students who use an appropriate method in order to determine parameters *a*, *b* and *c* have shown they have a partial understanding of the problem.

Do not penalize students who did not round their answers or rounded incorrectly.

Circle

21

Centre: (13, 10) radius: 4 cm

End points of the diameter (9, 10) and (17, 10)

Hyperbola

The vertices are (9, 10) and (17, 10) and therefore a = 4.

Half of the total length is 7 cm. So the foci are (6, 10) and (20, 10) and therefore c = 7.

Equation of hyperbola

$$c2 = a2 + b2$$

$$72 = 42 + b2$$

$$33 = b2$$

$$\therefore \qquad \frac{(x-13)^2}{16} - \frac{(y-10)^2}{33} = 1$$

To find the height let x = 6 and find the *y* coordinate

$$\frac{(6-13)^2}{16} - \frac{(y-10)^2}{33} = 1$$

$$33(-7)^2 - 16(y-10)^2 = 16(33)$$

$$1617 - 528 = 16(y-10)^2$$

$$1089 = 16(y-10)^2$$

$$68.0625 = (y-10)^2$$

$$\pm 8.25 = (y-10)$$

So
$$y = 10 + 8.25$$

= 18.25 and $y = 10 - 8.25$
= 1.75

Answer: The height of the frame is 16.5 cm.

Note: Students who use an appropriate method in order to determine a correct equation of the hyperbola have shown they have a partial understanding of the problem.

Let x: year y: number of homicides

Using a graphing calculator

Calculator method

22

Without a graphing calculator

Therefore, it would be expected that approximately 748 (849 or equivalent using a graph) homicides would occur in 2002.

Answer: Explanation: 582 homicides are not consistent with the model, which would suggest significantly more homicides than actually occurred. Since the correlation coefficient is low (0.40), the model itself is not a reliable predictor.

Note: Students who use an appropriate method in order to determine a correct equation for the line of regression have shown they have a partial understanding of the problem.

/4

Example of an appropriate solution

23

$\angle ABC = 90^{\circ}$	An angle inscribed in a semi-circle is a right angle				
Length of \overline{AC}	$5(m \overline{AC}) = 13^{2}$ $5(m \overline{AC}) = 169$ $m \overline{AC} = 33.8 \text{ cm}$	proportional mean			
Length of $\overline{\text{ED}}$	m $\overline{\text{ED}}$ + 14 + 5 = 33.8 m $\overline{\text{ED}}$ = 14.8 cm	length of the diameter			
Length of $\overline{\text{EB}}$	m $\overline{\text{EB}}^2 = 12^2 + 14.8^2$ m $\overline{\text{EB}} = 19.05$ cm				
Length of $\overline{\rm EF}$	m $\overline{EF}(19.05) = 14(33.8 - 14)$ m $\overline{EF}(19.05) = 14(19.8)$ m $\overline{EF} = 14.55$ (14.548)	constant product theorem if you use 19.053 608 58)			
Answer: To the nearest tenth, the measure of $\overline{\text{EF}}$ is 14.6 cm.					
	h				

Note: Students who use an appropriate method in order to determine the length of the diameter have shown they have a partial understanding of the problem.

Do not penalize students who did not round their answers or rounded incorrectly.

Segment $\overline{\text{DE}}$ is a tangent and segment $\overline{\text{OE}}$ is a radius, so m \angle DEA = 90°.

In
$$\triangle$$
 AED

$$(m \ \overline{AD})^2 = (m \ \overline{AE})^2 + (m \ \overline{DE})^2$$

$$(m \ \overline{AD})^2 = 32^2 + 24^2$$

$$(m \ \overline{AD})^2 = 1600$$

$$m \ \overline{AD} = 40 \ cm$$

$$(m \ \overline{AD})(m \ \overline{EC}) = (m \ \overline{DE})(m \ \overline{AE})$$

$$40(m \ \overline{EC}) = (24)(32)$$

$$m \ \overline{EC} = \frac{768}{40}$$

$$m \ \overline{EC} = 19.2 \ cm$$

- The measure of $\overline{\text{EC}}$ is **19.2** cm. Answer:
- Students who use an appropriate method in order to correctly determine m \overline{AE} have shown Note: they have a partial understanding of the problem.

Example of an appropriate solution

The minimum height of the pendulum is 150 cm.

The maximum height of the pendulum is $150 + (31 - 31 \sin 45^\circ) = 159.08$ cm. $y = a \cos b(x - h) + k$ 159.08 - 150

$$a = \frac{155.05 - 150}{2}$$

= 4.54
$$b = \frac{2\pi}{0.875}$$

= $\frac{16\pi}{7}$
$$k = \frac{159.08 + 150}{2}$$

= 154.54

h = 0 if *a* is negative

$$f(t) = -4.54 \cos\left(\frac{16\pi}{7}\right) + 154.54$$

1 hour = 3600 seconds f(3600) = 156 cm

Answer: To the nearest cm, the pendulum will be **156** cm above the ground after 1 hour.

Note: Students who use an appropriate method in order to determine parameters *a*, *b* and *k* have shown they have a partial understanding of the problem.

Students' answers may vary considerably, depending on the rounding they applied in the course of

25

/4