3. GUIDELINES

- Hand out the Question Booklets and Answer Booklets.
- Read the instructions that appear in the Question Booklet aloud.

4. CORRECTION KEY

Section A

Questions 1 to 104 marks or 0 marks

Section B

Accept other forms of the answer.

13 There will be 13570 insects after 24 weeks.

14
Vincent's test mark is 70%.
4 marks or 0 marks

Section C

Example of an appropriate solution
Calculation of revenue before the new constraint is considered

Vertices	$\mathrm{R}(x, y)=1.00 x+1.50 y$
$\mathrm{~A}(100,50)$	$100+75=\$ 175$
$\mathrm{~B}(450,50)$	$450+75=\$ 525$
$\mathrm{C}(250,250)$	$250+375=\$ 625$
$\mathrm{D}(100,100)$	$100+150=\$ 250$

$$
\begin{array}{ll}
\text { Maximum Revenue } \Rightarrow \$ 625 & \begin{array}{l}
250 \text { cases of oranges and } \\
250 \text { cases of grapefruit }
\end{array}
\end{array}
$$

Calculation of revenue after consideration of the constraint $x+y \leq 400$

Vertices	$\mathrm{R}(x, y)=1.00 x+1.50 y$
$\mathrm{~A}(100,50)$	$\$ 175$
$\mathrm{D}(100,100)$	$\$ 250$
$\mathrm{E}(200,200)$	$\$ 500$
$\mathrm{~F}(350,50)$	$\$ 425$

$$
\begin{array}{ll}
\text { Maximum Revenue } \Rightarrow 500 \$ & \begin{array}{l}
200 \text { cases of oranges } \\
200 \text { cases of grapefruit }
\end{array}
\end{array}
$$

Decrease of revenue because of the flood

$$
625-500=125
$$

Answer: The decrease in revenue caused by the flood is $\mathbf{\$ 1 2 5}$.

Example of an appropriate solution
Let $\quad x$: time measured in weeks
$f(x)$: percentage of popular vote
Coordinates of points
$\mathrm{P}(0,28)$
$S(10,43)$
Find the equation

$$
\begin{aligned}
& f(x)=a|x-h|+k \\
& f(x)=a|x-10|+43 \quad \text { domain } f=[0,26]
\end{aligned}
$$

Substitute $\mathrm{P}(0,28)$ into the equation

$$
\begin{aligned}
28 & =a|0-10|+43 \\
-15 & =a \cdot 10 \\
-1.5 & =a
\end{aligned}
$$

$$
f(x)=-1.5|x-10|+43
$$

Solve the equation

Answer: Party "A" has one quarter of the popular vote at $\mathbf{2 2}$ weeks.

$$
\begin{aligned}
& f(x)=25 \\
& -1.5|x-10|+43=25 \\
& -1.5|x-10|=-18 \\
& |x-10|=12 \\
& |x-10|=12 \\
& x-10=12 \\
& x=22 \\
& -x+10=12 \\
& -x=2 \\
& x=-2 \text { before the poll }
\end{aligned}
$$

Example of an appropriate solution
Let $\quad x$: number of copies sold
y : profit per copy sold
Find the rule of correspondence

$$
\begin{aligned}
y & =\frac{14 x-5 x-20000}{x} \\
& =\frac{9 x-20000}{x}
\end{aligned}
$$

Solve for a profit of $\$ 4$ per copy

$$
\begin{aligned}
4 & =\frac{9 x-20000}{x} \\
4 x & =9 x-20000 \\
20000 & =5 x \\
4000 & =x
\end{aligned}
$$

Answer: The publisher must sell $\mathbf{4 0 0 0}$ copies in order to make a profit of $\$ 4$ per book.

Example of an appropriate solution
Equation of the square root function
Vertex ($0,2,4$)
Point (16, 0)

$$
\begin{aligned}
f(x) & =A \sqrt{b(x-h)}+k \\
0 & =A \sqrt{1(16-0)}+2.4 \\
0 & =a \sqrt{16}+2.4 \\
0 & =4 a+2.4 \\
-2.4 & =4 a \\
-0.6 & =A
\end{aligned}
$$

So, $\quad f(x)=-0.6 \sqrt{x}+2.4$
Coordinates of the point where she stops $(10, h)$

$$
\begin{aligned}
f(x) & =-0.6 \sqrt{x}+2.4 \\
h & =-0.6 \sqrt{10}+2.4 \\
h & \approx 0.5
\end{aligned}
$$

Answer: Carol stops at a height of $\mathbf{0 . 5} \mathrm{m}$.

Example of an appropriate solution
Let t : time, in minutes, which has past since 21:00 $A(t)$: altitude of the airplane after t minutes

The rule of correspondence

$$
\begin{array}{rlrl}
A(t)=a \times c^{t} & & \\
10000 & =a \times c^{0} & & \mathrm{P}_{1}(0,10000) \\
10000 & =A & \mathrm{P}_{2}(4,5222) \\
A(t) & =10000 c^{t} & & \\
5222 & =10000 c^{4} & & \\
0.5222 & =c^{4} & & \\
(0.5222)^{\frac{1}{4}} & =c & & \\
0.85 & \approx c & & \\
A(t) & =10000(0.85)^{t} & &
\end{array}
$$

t when $A(t)=280$

$$
\begin{aligned}
280 & =10000(0.85)^{t} \\
0.028 & =0.85^{t} \\
t & =\log _{0.85} 0.028 \\
t & =\frac{\log 0.028}{\log 0.85} \\
t & \approx 22
\end{aligned}
$$

Answer: The airplane will be at an altitude of 280 m at $\mathbf{2 1 : 2 2}$.

Example of an appropriate solution
Let t : time, in seconds, that has past since 13:00 $f(t)$: height of the jet, in metres

The rule of correspondence

$$
f(t)=a \sin b(t-h)+k
$$

$$
\begin{aligned}
a & =\frac{5-1}{2}=2 \\
p & =\frac{2 \pi}{|b|} \\
60 & =\frac{2 \pi}{|b|} \\
|b| & =\frac{2 \pi}{60} \\
|b| & =\frac{\pi}{30}
\end{aligned}
$$

$$
f(x)=2 \sin \frac{\pi}{30}(t-h+k)
$$

Translation $(h, k)=(15,3)$

$$
f(t)=2 \sin \frac{\pi}{30}(t-15)+3
$$

Height at 13 h 12 min 40 s
Since the function has a period of one minute, the jet will be at the same height in 40 seconds.

$$
\begin{aligned}
f(40) & =2 \sin \frac{\pi}{30}(40-15)+3 \\
& \approx 3.09
\end{aligned}
$$

Answer: At 13 hours 12 minutes and 40 seconds, the water jet will be at a height of $\mathbf{4 m}$.

$$
\begin{aligned}
\tan x+\frac{\cos x}{1+\sin x} & =\sec x \\
\frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x} & =\sec x \\
\frac{\sin x(1+\sin x)+\cos ^{2} x}{\cos x(1+\sin x)} & =\sec x \\
\frac{\sin x+\sin ^{2} x+\cos ^{2} x}{\cos x(1+\sin x)} & =\sec x \\
\frac{\sin x+1}{\cos x(1+\sin x)} & =\sec x \\
\frac{1}{\cos x} & =\sec x \\
\sec x & =\sec x
\end{aligned}
$$

(1)	1 mark
(2)	1 mark
(3)	1 mark
(4)	1 mark

Equation of the hyperbola
Form $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
Distance between the vertices

$$
20--4=24
$$

Since the center of the hyperbola is $\mathrm{C}(8,0), h=8$ and $k=0$
Value of a

$$
a=\frac{24}{2}=12
$$

Value of b
The equation of an asymptote is $y=2(x-8)$

$$
\begin{aligned}
\frac{b}{a} & =2 \\
\frac{b}{12} & =2 \\
b & =24
\end{aligned}
$$

$$
\therefore \frac{(x-8)^{2}}{144}-\frac{y^{2}}{576}=1
$$

Coordinates of points P and S

Abscissa $=$ radius of the circle $=\sqrt{900}=30$
Ordinates

$$
\begin{array}{rlr}
\frac{(30-8)^{2}}{144}-\frac{y^{2}}{576} & =1 & \mathrm{P}(30,37) \\
\frac{22^{2}}{144}-\frac{y^{2}}{576} & =1 & \mathrm{~S}(30,-37) \\
\frac{484}{144}-1 & =\frac{y^{2}}{576} & \\
y^{2} & =576 \times \frac{340}{144} \\
y & \approx \pm 36.9 &
\end{array}
$$

Distance between the traffic signs

$$
\begin{aligned}
\mathrm{m} \stackrel{\rightharpoonup}{\mathrm{PS}} & =37--37 \\
& =74
\end{aligned}
$$

Answer: The distance between the two signs is 74 m .

Equation of the tangent line

$$
4 x+3 y-43=0 \quad \text { or } \quad y=\frac{-4}{3} x+\frac{43}{3}
$$

Equation of the perpendicular line passing through $\mathrm{C}(3,2)$

$$
y=\frac{3}{4} x-\frac{1}{4}
$$

Intersection of the two lines

$$
\begin{aligned}
\frac{-4}{3} x+\frac{43}{3} & =\frac{3}{4} x-\frac{1}{4} \\
\frac{25}{12} x & =\frac{175}{12} \\
x & =7 \\
\text { If } x=7, \quad y & =\frac{3}{4}(7)-\frac{1}{4}=5
\end{aligned}
$$

The coordinate at the point of intersection is $\mathrm{P}(7,5)$.

Measure of the radius of the circle

$$
\mathrm{d}(\mathrm{C}, \mathrm{P})=\sqrt{(7-3)^{2}+(5-2)^{2}}=\sqrt{25}=5
$$

Equation of the circle $(x-3)^{2}+(y-2)^{2}=25$

Answer \quad The equation of the circle is $(x-3)^{2}+(y-2)^{2}=25$.

The general form of the equation, $x^{2}+y^{2}-6 x-4 y-12=0$, should also be accepted.

Calculate the length of segment $\overline{\mathrm{AB}}$, given triangle ABC is isosceles and therefore $\overline{\mathrm{AM}}=12$:

$$
\begin{aligned}
\overline{\mathrm{AB}} & =\sqrt{\left((\overline{\mathrm{AM}})^{2}+(\overline{\mathrm{BM}})^{2}\right)} \\
& =\sqrt{12^{2}+9^{2}} \\
& =\sqrt{225} \\
& =15 \mathrm{dm}
\end{aligned}
$$

Calculate the length of segment $\overline{\mathrm{PM}}$

$$
\overline{\mathrm{PM}} \cdot \overline{\mathrm{AB}}=\overline{\mathrm{AM}} \cdot \overline{\mathrm{BM}}
$$

(In a right triangle, the length of the hypotenuse multiplied by the length of the altitude to the hypotenuse is equal to the product of the lengths of the sides of the right angle.)

$$
\begin{aligned}
& \overline{\mathrm{PM}} \cdot 15=12 \cdot 9 \\
& \overline{\mathrm{PM}}=7.2 \mathrm{dm}
\end{aligned}
$$

Answer: Segments $\overline{\mathrm{PM}}$ and $\overline{\mathrm{QM}}$ each measure 7.2 dm .

