CORRECTION KEY

	Part A			
	Questions 1 to 8 4 marks or 0 m	arks		
1	В	5 B		
2	С	6 C		
3	A	7 D		
4	С	8 A		
				l
	Questions 9 to 15 4 marks each	Part B ch		
9	The range of $f^{-1}(x)$ is $-\infty$, -5]		4 or 0 marks	/4
10	The domain of $f(x)$ is $]-\infty$, $3[\cup]3, +\infty[$. The range of $f(x)$ is $]-\infty$, $-1.5[\cup]-1.5, +\infty$ Assign 2 marks for each answer.	ວ[.	4, 2 or 0 marks	/4
11	The solution set is $x = 4$ Assign 2 marks if the student included the	e extraneous root, -2.5.	4, 2 or 0 marks	/4

12	The measure of \angle DCE is 35 °.	4, 3 or 0 marks	/4
	Assign 3 marks if the student answered 70°, having forgotten to divide by 2.		
13	To the nearest unit, the magnitude is 8 units. To the nearest degree, the direction is W76°N or equivalent. Assign 2 marks for each answer.	4, 2 or 0 marks	/4
14	The exact values of x are $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.	4, 2 or 0 marks	/4
15	Example of an appropriate solution		/4
	$\frac{\sec \theta}{\tan \theta + \cot \theta} = \sin \theta$ $\frac{\sec \theta}{\tan \theta + \cot \theta}$		
	$\frac{\sec \theta}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}} $ 1 mark		
	$\frac{\sec \theta}{\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}} $ 1 mark		
	$\frac{\frac{\sec \theta}{1}}{\frac{1}{\cos \theta} \times \cos \theta \sin \theta} $ 1 mark $\frac{1}{\cos \theta} \times \cos \theta \sin \theta$		

 $sin \ \theta$

1 mark

Part C

Questions 16 to 254 marks eachNo marks are to be given if work is not shown. Examples of correct solutions are given.However, other acceptable solutions are possible.

Example of an appropriate solution

x: number of hours at first job per month *y*: number of hours at second job per month

Constraints before

16

 $x \ge 10$ $y \le 40$ $y \ge 0$ $x + y \ge 30$ $x + y \le 60$ $y \ge x$

Constraints after

 $x \ge 10$ $y \ge 0$ $x + y \ge 30$ $x + y \le 60$ $y \ge x$

Maximum Before				
Vertices	S = 6.3x + 8y (\$)			
A(10, 40)	383			
B(10, 20)	223			
C(15, 15)	214.50			
D(30, 30)	429			
E(20, 40)	446			

Maximum After				
Vertices	S = 6.3x + 8y (\$)			
B(10, 20)	223			
C(15, 15)	214.50			
D(30, 30)	429			
F(10, 50)	463			

Difference in maximum salary \$463 - \$446 = \$17

Answer: Murray's maximum possible salary increased by \$17

Note: Students who use an appropriate method in order to determine **the constraints, graph the original polygon, and find its vertices** have shown they have a partial understanding of the problem.

Example of an appropriate solution

Vertex is (80, 140) and the initial value is (0, 40).

Rate of change of the left arm

$$\frac{140 - 40}{80 - 0} = \frac{100}{80}$$
$$= \frac{5}{4}$$

The rate of the left arm is $\frac{5}{4}$, therefore the rate of the right arm is $-\frac{5}{4}$.

Hence the rule

17

$$H(t) = -\frac{5}{4}|t - 80| + 140$$

Substitute H(t) = 60

$$60 = -\frac{5}{4}|t - 80| + 140$$
$$-80 = -\frac{5}{4}|t - 80|$$
$$64 = |t - 80|$$
$$|t - 80| = 64$$

For	$t - 80 \ge 0, t \ge 80$	For	$t - 80 \le 0, t \le 80$
	t - 80 = 64		t - 80 = 64
	t - 80 = 64		t - 80 = -64
	t = 144		<i>t</i> = 16

- Answer: The helicopter was at an altitude of 60 m after 16 seconds as it ascended and 144 seconds as it descended.
- **Note:** Students who have found **the rule of the absolute value** have shown they have a partial understanding of the problem.

Once students have found the rule, they can use a graphing calculator to determine the intersection between the absolute value and the line y = 60. Appropriate explanation must be provided.

18

 $\frac{1}{2} (\text{period}) = 15, P = 30 \text{ seconds}$ $30 = \frac{2\pi}{|b|}$ $|b| = \frac{2\pi}{30}$ $= \frac{\pi}{15}$

$$H(t) = 10 \sin \frac{\pi}{15} (x - 7.5) + 12$$

Height of Tom's seat after 20 seconds

$$H(20) = 10 \sin \frac{\pi}{15}(20 - 7.5) + 12$$

= 17 metres

Answer: Tom's seat is 17 m above the ground 20 seconds after the Ferris wheel begins to turn.

- Note: $H(t) = -10 \cos \frac{\pi}{15}x + 12$ and $H(t) = -10 \sin \frac{\pi}{15}(x 22.5) + 12$ are examples of other acceptable rules.
- **Note:** Students who use an appropriate method in order to determine **parameters** *a* **and** *b* have shown they have a partial understanding of the problem.

/4

Example of an appropriate solution

 $2c = 100 \qquad c = 50$ $2a = 60 \qquad a = 30$ $\therefore \quad b^2 = c^2 - a^2$

$$b = \sqrt{2500 - 900}$$
$$b = 40$$

Equation of hyperbola $r^2 v^2$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\therefore \quad \frac{x^2}{900} - \frac{y^2}{1600} = 1$$

Sub in x = 50 $\frac{50^2}{900}$

$$\frac{50^2}{900} - \frac{y^2}{1600} = 1$$
$$y^2 = 1600 \left(\frac{1600}{900}\right)$$
$$y \approx \pm 53.3$$

Height

 2×53.3 cm ≈ 106.6 cm

- Answer: Height PQ of the leg of the table saw is approximately 106.6 cm.
- **Note:** Students who have determined **the equation of the hyperbola** have shown they have a partial understanding of the problem.

Do not penalize students who did not round their final answer or rounded incorrectly.

m
$$\overline{AD} \times m \overline{DB} = m \overline{CD} \times m \overline{DE}$$

8 cm × 10 cm = m $\overline{CD} \times 5$ cm
m $\overline{CD} = \frac{8 \text{ cm} \times 10 \text{ cm}}{5 \text{ cm}}$
m $\overline{CD} = 16 \text{ cm}$
m $\overline{PC} \times m \overline{PE} = (m \overline{PT})^2$
4 cm × 25 cm = $(m \overline{PT})^2$
 $(m \overline{PT})^2 = 100 \text{ cm}^2$
m $\overline{PT} = 10 \text{ cm}$

Segment PT is a tangent and segment OT is a radius. \therefore m \angle PTO = 90°

In
$$\Delta$$
 PTO

$$(m \ \overline{OT})^2 = (m \ \overline{OP})^2 - (m \ \overline{PT})^2 (m \ \overline{OT})^2 = (17 \ cm)^2 - (10 \ cm)^2 m \ \overline{OT} = \sqrt{289 \ cm^2 - 100 \ cm^2} m \ \overline{OT} \approx 13.74$$

Answer: To the nearest tenth, the measure of the radius is **13.7** cm.

Note: Students who use an appropriate method in order to determine m $\overline{\text{CD}}$ have shown they have a partial understanding of the problem.

Do not penalize students who did not round their final answer or rounded incorrectly.

Example 1

Find m \overline{AB} by using right triangle/mean proportion relation Δ ABC is right angled at A $(m \overline{AB})^2 = m \overline{BF} \times m \overline{BC}$ $\left(m \overline{AB}\right)^2 = 9(24)$ $\left(m \ \overline{AB}\right)^2 = 216$ m $\overline{AB} = 6\sqrt{6}$ cm \triangle ABF ~ \triangle AED and m \overline{AF} = m \overline{FD} $\frac{m \ \overline{AF}}{m \ \overline{AD}} = \frac{m \ \overline{AB}}{m \ \overline{AE}}$ *.*.. $=\frac{1}{2}$ $m \overline{AE} = 2 m \overline{AB}$ $= 12\sqrt{6}$ cm $\frac{m \ \overline{BF}}{m \ \overline{ED}} = \frac{1}{2}$ m $\overline{BF} = 9$ cm \therefore m $\overline{\text{ED}}$ = 18 cm $\overline{\text{EA}}$ and $\overline{\text{EG}}$ are secants. Let $x = m \overline{DG}$ m AD *.*.. $m \overline{EB} \times m \overline{EA} = m \overline{ED} \times m \overline{EG}$ $(6\sqrt{6})(12\sqrt{6}) = 18(18 + x)$ 432 = 18(18 + x)24 = 18 + x

Example 2 Join points A and G through O D Since $\triangle ABF \sim \triangle AED$ $\therefore \overline{BC} // \overline{EG}$ since m $\angle AFB = m \angle ADE$ Since \overline{BC} bisects \overline{AD} and $\overline{BC} // \overline{EG}$, \overline{BC} also bisects \overline{AG} $\frac{m \overline{AD}}{m \overline{AF}} = \frac{m \overline{AG}}{m \overline{AO}}$ $=\frac{2}{1}$ $\therefore \Delta AFO \sim \Delta ADG$ by SAS m DG $\overline{\text{m} \overline{\text{AF}}} - \overline{\text{m} \overline{\text{FO}}}$ $\frac{2}{1}{2}$ $\overline{3}$ cm

Answer: To the nearest centimetre, the length of segment DG is 6 cm.

6 = x

Note: Students who use an appropriate method in order to determine **m** AE or the **m** ED (example 1) have shown they have a partial understanding of the problem.

21

Let x: Force (N) y: Extension (cm)

Using a graphing calculator

Calculator method

Without a graphing calculator

According to the data, a force of 6.25 N would seem to be consistent with an extension of 15.54 cm (\approx 15.3 cm using the graph).

Answer: Justification: 15.54 cm is a valid prediction based on the data provided. Since the correlation is very high, the prediction can be made with a high degree of confidence.

Note: Students who have used an appropriate method to determine **the regression equation** have shown they have a partial understanding of the problem.

Example 1

Let v(t) be the value of Albert's investment *t* years after 1991

$$v(t) = 4000(\text{base})^t$$
 therefore in 1991,
 $4000(c)^8 = 5474.28$
 $c^8 = 1.368\ 57$
 $c = \sqrt[8]{1.368\ 57}$
 ≈ 1.04

Time to triple investment

 $4000(1.04)^t = 12\ 000$

$$(1.04)^{t} = 3$$
$$t = \frac{\log 3}{\log 1.04}$$
$$\approx 28 \text{ years}$$

Let v_o be the value of Jocelyn's initial investment

$$15\ 000 = v_o\ (1.04)^{28}$$
$$v_o\ = \left(\frac{15\ 000}{(1.04)^{28}}\right)$$
$$\approx 5002.16$$

Difference between both initial investments \$5002 - \$4000 = \$1002

Example 2 $v = ab^x$ $\frac{y}{x} = b^x$ since the length of time and the a rate are both the same. $\therefore \frac{y}{-} = \text{constant}$ *.*. Albert's investment triples in the same length of time that Jocelyn's investment does. $\frac{y_1}{x_2} = \frac{y_2}{x_2}$ $a_1 \quad a_2$ 12 000 15 000 4000 a.

$$a_2 = $5000$$

Difference between both initial investments \$5000 - \$4000 = \$1000

Answer: The difference between Albert's and Jocelyn's initial investments is \$1002.

Note: Accept answers in the range of \$1000 to \$1002, as a result of rounding differences.

Students who use an appropriate method in order to correctly determine the value $c \approx 1.04$ (example 1) have shown they have a partial understanding of the problem.

Do not penalize students who did not round their final answer or rounded incorrectly.

/4

24

Example of an appropriate solution

$$\frac{(x-10)^2}{100} + \frac{(y-8)^2}{64} = 1$$

Centre: (10, 8), *a* = 10 and *b* = 8

$$\therefore \quad c^2 = a^2 - b^2$$
$$c = \sqrt{10^2 - 8^2}$$
$$= 6$$

The coordinates of the foci are: $F_1(10 - 6, 8)$ and $F_2(10 + 6, 8)$ \therefore $F_1(4, 8)$ and $F_2(16, 8)$

Point on square root function, vertex F₂, is equal to center of circle B(12, 11).

Rule of square root function, F₂
$$f(x) = a\sqrt{-(x-h)} + k$$

Vertex: (16, 8)

$$f(x) = a\sqrt{-(x-16)} + 8$$

Substitute in (12, 11) and solve for *a*

$$11 = a\sqrt{-(12 - 16)} + 8$$

3 = a\sqrt{4}
a = 1.5

:.
$$f(x) = 1.5\sqrt{-(x-16)} + 8$$

Answer: The rule of the square root function whose vertex is F_2 is $f(x) = 1.5\sqrt{-(x-16)} + 8$.

Note: Students who have determined F_2 of the ellipse and the center of circle B have shown they have a partial understanding of the problem.

Deduct one mark if students forgot to put the negative sign in solving for F₂.

25

Example of an appropriate solution

Equation of f(x) f(x) = a|x - 3| + kSlope of right ray of f(x) $\frac{-9 - 0}{6 - 4.5} = -6$ f(x) = -6|x - 3| + k 0 = -6|4.5 - 3| + k $\therefore f(x) = -6|x - 3| + 9$ k = 9Equation of left ray of f(x) f(0) = -6|0 - 3| + 9 = -9 y = 6x - 9Equation of left ray of g(x) g(0) = 4|0 - 3| + 3 = 15 y = -4x + 15Coordinates of intersection point 6x - 9 = -4x + 15 y = 6(2.4) - 9x = 2.4 y = 5.4

Point A(2.4, 5.4) by symmetry Point B(3.6, 5.4) A graphing calculator can also be used to find points A and B. However, students would have to explain the process they had applied.

Area of triangle

Area =
$$\frac{\text{base} \times \text{height}}{2}$$
$$= \frac{(3.6 - 2.4) \times (9 - 5.4)}{2}$$
Area =
$$\frac{(1.2) \times (3.6)}{2}$$
$$= 2.16$$

Answer: The area of the shaded triangular region is 2.16 units².

Note: Do not penalize students who did not round their final answer or rounded incorrectly.

Students who have used an appropriate method to determine the rule for f(x) have shown they have a partial understanding of the problem.

/4