Question 1. Evaluate the indefinite integrals:
a. (5 marks)

$$
\int\left(x^{2}+x\right) \sin \left(2 x^{3}+3 x^{2}\right) d x
$$

b. (5 marks)

$$
\int \ln \left(x^{2}+4\right) d x
$$

Answer: a. $\frac{-1}{6} \cos \left(2 x^{3}+3 x^{2}\right)+C \quad$ b. $x \ln \left(x^{2}+4\right)-2 x+\arctan \left(\frac{x}{2}\right)+C$
Question 2. (5 marks) Evaluate the indefinite integral:

$$
\int \frac{1}{t^{2} \sqrt{9 t^{2}+1}} d t
$$

Answer: $-\frac{\sqrt{9 t^{2}+1}}{t}+C$
Question 3. (5 marks) Evaluate the indefinite integral:

$$
\int \frac{2 x^{2}+x+1}{x^{3}+x} d x
$$

Answer: $\ln |x|+\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan x+C$
Question 4. (5 marks) Evaluate the definite integral:

$$
\int_{0}^{3} \frac{x-\sqrt{x+1}}{\sqrt{x+1}} d x
$$

Answer: $\frac{-1}{3}$
Question 5. (5 marks) Find and simplify:

$$
\frac{d}{d x}\left[\int_{\arcsin x}^{2 x} \sqrt[3]{\sin t} d t\right]
$$

Answer: $2 \sqrt[3]{\sin (2 x)}-\frac{\sqrt[3]{x}}{\sqrt{1-x^{2}}}$
Question 6. (5 marks) Use only the definition of the definite integral to evaluate:

$$
\int_{1}^{2}\left(1-6 x^{2}\right) d x
$$

Answer: - 13

Question 7. (5 marks) Find the average value of the function

$$
f(x)=\frac{x^{5}+x^{3}+x}{x^{2}+9}
$$

over the interval $[-3,3]$.

Answer: 0

Question 8. (5 marks) Given

$$
\int_{a}^{b} g(x) d x=6, \quad \int_{a}^{c} g(x) d x=3, \int_{c}^{a} h(x) d x=-1, \int_{c}^{b} h(x) d x=11
$$

find

$$
\int_{a}^{b}(2 g(x)-h(x)) d x
$$

Answer: 0

Question 9. (5 marks) Find the total area of the region bounded by the graphs of $y=\frac{3}{x}, y=2 x-1$ between $x=1$ and $x=e$.

Answer: $6 \ln \left(\frac{3}{2}\right)+e^{2}-e-\frac{9}{2}$
Question 10. (5 marks) Find the volume of the solid obtained when the region bounded by the graphs of $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ is rotated about the line $x=-1$.

Answer: $\frac{29}{30} \pi$
Question 11. (5 marks) A hemispherical bowl is filled with liquid chocolate which has a density of $\rho=1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$. If the bowl is 0.26 m across the top (diameter), how much work is required to drink the entire bowl of chocolate through a straw that extends 0.20 m above the top edge? $\left(g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$

Answer: $\approx 13.4604 \mathrm{~J}$
Question 12. (5 marks) Find the arc length of the graph of the function

$$
y=\ln (\cos x)
$$

over the interval $\left[0, \frac{\pi}{3}\right]$.
Answer: $\ln (2+\sqrt{3})$
Question 13. Evaluate the limits:
a. (5 marks)

$$
\lim _{x \rightarrow \infty} x\left(\frac{\pi}{2}-\arctan (x)\right)
$$

b. (5 marks)

$$
\lim _{x \rightarrow 0^{+}}(\sin x)^{x}
$$

| Answer: a. 1 | b. 1 |
| :--- | :--- | :--- |

Question 14. (5 marks) Evaluate the improper integral or show it diverges:

$$
\int_{e^{2}}^{\infty} \frac{\ln x}{x^{2}} d x
$$

Answer: $\frac{3}{e^{2}}$
Question 15. (5 marks) Find the sum of the following series if it converges or show it diverges.

$$
\sum_{n=3}^{\infty} \frac{1}{(3 n-2)(3 n+1)}
$$

Answer: $\frac{1}{21}$

Question 16. Determine whether each of the following series converges or diverges. Justify your answer.
a. (5 marks)

$$
\sum_{n=10}^{\infty} \frac{\sqrt{n^{9}+n^{4}-1}}{\sqrt{n^{9}+1}}
$$

b. (5 marks)

$$
\sum_{n=1}^{\infty} \frac{e^{-n^{1 / 3}}}{n^{2 / 3}}
$$

Answer: a. Diverges, by the test for divergence b. Converges, by the integral test
Question 17. Determine whether each of the following series converges or diverges. Justify your answer.
a. (5 marks)

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{(2 n)!}
$$

b. (5 marks)

$$
\sum_{n=1}^{\infty} \cos \left(\frac{\pi}{2}-\frac{1}{n}\right)
$$

Answer: a. Converges, by the ratio test b. Diverges, by the limit comparison test
Question 18. (5 marks) Find the Taylor Polynomial of order 3 of $f(x)=x^{2} \sin x$ at $x=\pi$.
Answer: $P_{3}(x)=-\pi^{2}(x-\pi)-2 \pi(x-\pi)^{2}+\left(\frac{1}{6} \pi^{2}-1\right)(x-\pi)^{3}$

