BOOMERANG INTEGRAL |
The boomerang integral: so called because, it comes back to you,
generally occurs when we integrate exponential functions combined
with either sine, cosine, or other trig functions (such as sec 3 x),
which don't fit any of the categories for trig integrals.
Here are 2 examples:
Ex 1
Let's name the integral I.
since we have a product, we will use integration by parts.
I = e 2x sin x - 2 ![]() |
u = e 2x | dv = cos x dx |
still a product so we use parts again | du = 2e 2x dx | v = sin x |
I = e 2x sin x - 2 [- e 2x cos x + 2 ![]() ![]() |
u 1 = e 2x | dv 1 = sin x dx |
I = e 2x sin x + 2e 2x cos x - 4I | du 1 = 2e 2x dx | v 1 = - cos x |
5I = e 2x sin x + 2e 2x cos x | ||
I = ![]() |
.
Ex 2
I = ![]() |
u = sec x | dv = sec 2 x dx |
du = sec x tan x dx | v = tan x | |
I = sec x tan x - ![]() |
||
using tan 2 x = sec 2 x - 1 | ||
I = sec x tan x - ![]() |
||
I = sec x tan x - ![]() |
||
I = sec x tan x - I + ![]() |
||
2I = sec x tan x + ln | sec x + tan x | u I = ½ (sec x tan x + ln | sec x + tan x |) + C |
.
This is classic exam question.
Practice
Integrate
.
Solution
Integrate
I = -½ e 3x cos 2x + ![]() |
u = e 3x | dv = sin 2x dx |
still a product so we use parts again | du = 3e 3x dx | v = - ½ cos 2x |
I = -½ e 3x cos 2x + ![]() |
u 1 = e 3x | dv 1 = cos 2x dx |
![]() |
du 1 = 3e 3x dx | v 1 = ½ sin 2x |
so ![]() |
||
.
.
Back to Calculus II MathRoom Index
.